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Abstract In this work we construct the stationary measure of the N species totally asym-
metric simple exclusion process in a matrix product formulation. We make the connec-
tion between the matrix product formulation and the queueing theory picture of Ferrari and
Martin. In particular, in the standard representation, the matrices act on the space of queue
lengths. For N > 2 the matrices in fact become tensor products of elements of quadratic
algebras. This enables us to give a purely algebraic proof of the stationary measure which
we present for N = 3.

Keywords Totally asymmetric simple exclusion process · Multi-species systems ·
Stationary states · Matrix representation

1 Introduction

Models of diffusing particles with hard core interactions were first considered in the math-
ematical literature [1] and the name exclusion process was first coined by Spitzer [2]. In
the totally asymmetric simple exclusion process (TASEP) particles jump only to the right
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on a one-dimensional lattice but cannot occupy the same site. Mathematical achievements
include categorising the stationary measures for the process on Z and many results are sum-
marised in the books by Liggett [3, 4].

Since the early 1990s the TASEP has been of considerable interest within the physics
community as a prototypical model of nonequilibrium behaviour where, in the steady state,
a current of particles is supported. In particular the model has been studied on the ring ZL

and also on a lattice of length L with open boundary conditions where particles enter at
the left boundary and leave at the right boundary. Notable achievements have been the use
of the Bethe ansatz to determine spectral properties of the transition rate matrix [5–8] and
the determination of the stationary state in the open boundary case within a matrix product
formulation [9].

A generalisation of the TASEP is to the case of several species of particle. In the two-
species exclusion process containing first-class particles and second-class particles [12] both
first and second-class particles hop to the right with rate 1. However if the site to the right of
a first-class particle is occupied by a second-class particle the first and second-class particle
exchange places with rate 1. Thus a second-class particle behaves as a hole from the point
of view of a first-class particle but behaves as a particle from the point of view of a hole. The
introduction of such a second class particle is a useful tool to study the microscopic structure
of shocks [10–12]. Besides, the second-class particle problem arises naturally from coupling
two TASEPs with different densities of particles [13]: the excess particles in the system with
higher density acquire the dynamics of second-class particles. The stationary state of a sys-
tem containing second and first-class particles has been obtained using the matrix product
formulation by Derrida et al. [12]. Based on this work, Ferrari, Fontes and Kohayakawa
[14] introduced a probabilistic construction of the measure. Angel [15] improved this con-
struction providing a combinatorial description of the stationary state. In [16, 17], Ferrari
and Martin showed that Angel’s work could be interpreted as a queueing system and they
generalized it to the N species case, for arbitrary N .

In the physics literature, the exclusion process with N species of particles was considered
by Mallick, Mallick and Rajewsky [18] and studied for the case N = 3. This model, which
we refer to as the N -TASEP, is defined by having site variables τi which may take values
0,1, . . . ,N where N is the number of species. (Note that one could alternatively consider
the state τi = 0 (a hole) as a species which would imply a total of N + 1 species; we choose
instead to use the more common convention.) The dynamics is defined as follows: each bond
between neighbouring lattice sites has a bell which rings with rate 1. When the bell at bond
i, i + 1 rings the site variables at i and i + 1 are exchanged provided τi+1 = 0, τi > 0 or
τi+1 > τi ≥ 1. This is equivalent to the following exchanges occurring with rate 1

K 0 → 0 K for N ≥ K ≥ 1, (1)

K J → J K for N ≥ J > K ≥ 1. (2)

The construction of Ferrari and Martin [16, 17] couples N realizations of the TASEP in a
special way, called the N -line process. To the N configurations in the N -line system one
associates a configuration of the N -TASEP. Furthermore, each dynamical event of the N -
line process corresponds precisely to a dynamical event in the N -TASEP. The steady state
measure of the N -line system is just a uniform distribution of particles. This implies that
one may sample the N -TASEP configurations with their stationary state probability by a
two step procedure: (a) uniformly sampling a configuration of the N -line system of particles
and (b) finding the associated configuration of the N -TASEP.
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Our aim in this work is to invert this construction to obtain direct expressions for the
steady state probabilities which generalise those already obtained for the two species case
[12] and the three species case [18]. In doing so we shall see how the matrix product formu-
lation generalises into a tensor product.

The paper is structured as follows. In Sect. 2 we review the known results on the station-
ary measure of the 2-TASEP and show how the matrix product representation [12] is related
to the queueing representation [17]. In Sect. 3 we consider the N -TASEP and deduce a
procedure for computing the stationary state probabilities. In Sect. 4 we construct a matrix
product representation of the 3-TASEP stationary measure. In Sect. 5 we show how matrix
product representations of the N -TASEP may be obtained recursively and we conclude in
Sect. 6.

2 Two Species TASEP

In this section, we review the known solution of the two species TASEP. We also illustrate
the equivalence between the matrix product solution of Derrida et al., the construction of
Angel and the queueing process interpretation of Ferrari and Martin.

2.1 Construction of Angel that Generates the Stationary State

We begin by considering the construction of Angel for the two species TASEP on the
ring ZL. (Note that we often use a different notation to [15] in order to avoid a clash with
some standard notation from the matrix product formulation.) The construction is to consider
a two-line configuration of particles (see Fig. 1). On line 1 there are P1 particles distributed
randomly (with at most one particle per site) and on line 2 there are P1 + P2 particles dis-
tributed randomly. Working from right to left we associate to each particle in line 1, the
nearest particle, at the same site or to the left, in line 2 that has not already been associated
to another particle. The associated particles in line 2 are then labelled 1 and the remaining P2

unassociated particles are labelled 2. The empty sites of line 2 are labelled 0 thus each site of
line 2 is labelled 0, 1 or 2. In this way a configuration of the two species TASEP containing
P1 first-class and P2 second-class particles has been generated through the construction.

Fig. 1 Graphical representation of the construction for two species
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The order used to choose the particles in line 1 to be associated to particles of line 2
(sequentially to the left, starting from the furthest site to the right in Fig. 1) does not affect
the two species TASEP configuration that is generated. Indeed Angel gives the following non
algorithmic definition of the labelling: (a) label 0 all the empty sites of line 2. (b) consider
the sites i containing a particle of line 2; this particle is labelled 2 if and only if for all
interval [i, j ] ⊂ ZL the number of particles in line 1 in [i, j ] is smaller than the number of
particles in line 2 in [i, j ]; otherwise the particle is labelled 1.

On the other hand, the particle in line 2 associated to a given particle in line 1 may
depend on the order of choice and on the starting particle. For instance, keeping sequential
order from right to left, if in Fig. 1 one starts with the third particle from the right in line 1,
then it would be associated to the fourth particle from the right in line 2, while the second
particle from the right in line 1 would be associated to the fifth particle from the right in
line 2.

As noted in the introduction, uniformly sampling the 2-line configurations generates
2-TASEP configurations according to their stationary measure.

Angel showed that by uniformly sampling the two-line configurations, the configurations
of the two-species TASEP, which we denote C , are sampled with the following probabilities

P(C) =
∏P2

j=1 ω(Bj )

Z(L,P1,P2)
. (3)

Here ω(Bj ) is the weight of the binary string Bj of 0,1 separating the second-class particles
indexed by j and j + 1 (here j ∈ ZP2 indexes the second class particles). The normalization

Z(L,P1,P2) =
(

L

P1

)(
L

P1 + P2

)

(4)

just counts the number of possible 2-line configurations. Note that the form of the mea-
sure (3) implies a factorization of the stationary state about the positions of the second-class
particles. The reason for the factorisation is, as can be seen from Fig. 1, that all 2-line config-
urations associated with a given 2-TASEP configuration must have the following properties:
consider a site i, such that there is a particle labelled 2 at i in line 2, then i must be empty on
line 1; moreover, no particle in line 1 to the right of i can be associated to a particle in line 2
to the left of i. This factorization property, which appeared in the matrix product formulation
of Derrida et al. [12], was used in the construction of the stationary weights by [14].

The weights ω(B) are given by the following algorithm which we shall refer to as the
pushing procedure: given the binary string B , one enumerates the number of strings which
can be obtained from it by pushing the 1s to the right, in addition to the original string. For
example from the string 110 one obtains 110, 101, 011. Thus ω(110) = 3. Similarly, one
can obtain from 1010 the strings 1010, 0110, 1001, 0101, 0011. Thus ω(1010) = 5.

The measure given by (3) is stationary under the dynamics of the 2 species TASEP [12,
14, 15, 19]. Two key properties of this measure are (i) the factorisation of the probabilities of
the 2-TASEP configurations about the position of the second class particles (ii) the weights
ω(B) are given by the pushing procedure described above.

2.2 Matrix Product Solution of Derrida et al.

The matrix product formulation has been used to write down the stationary probabilities of
various interacting particle models, thus allowing models to be solved through the explicit
computation of physical quantities of interest such as currents, density profiles, correlation
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functions. It was first used to solve the TASEP on a lattice of length L with open boundary
conditions [9]. It has been extended to the 2-TASEP on the ring ZL [12], partially asym-
metric processes and more general reaction-diffusion systems (for a review see [20]). In this
matrix product formulation properties of the stationary measure manifest themselves in al-
gebraic relations amongst the matrices involved. Some of these relations have been classified
as quadratic algebras [21].

It is important to note that the measure (3), along with the calculation of the weights
ω(B), is equivalent to that first obtained within the matrix product approach, as we now
show. We recall that we use the variable τi = 0,1,2 which implies that site i is empty,
contains a first-class particle or contains a second-class particle, respectively. Let us denote
by C = (τ1, . . . , τL), a configuration of the system. In the matrix product formulation [12] it
has been proved that the stationary measure may be written as

P(C) = Z−1W(C), (5)

where the weight of the configuration is given by

W(C) = Tr

[
L∏

i=1

Xτi

]

(6)

and Tr means the trace of the product of matrices Xτi . The normalization Z = Z(L,P1,P2)

is chosen so that the sum of all the probabilities is equal to 1. The matrices Xτi are given by

X0 = E, X1 = D, X2 = A, (7)

that is: if the site is empty we write a matrix E; if the site contains a first-class particle we
write a matrix D; if the site contains a second-class particle we write a matrix A.

The matrices D,E,A obey the algebraic rules

DE = D + E, (8)

DA = A, (9)

AE = A. (10)

The only remaining condition to satisfy is that representations of E, D, A may be found
which give well-defined values for the traces appearing in (5). This may be achieved as fol-
lows. Let |n〉 and 〈n| be the column, respectively row, vector having a 1 in the nth coordinate
and 0 in the other ones, n = 0,1,2, . . . . Let A be the projector matrix

A = |0〉〈0| (11)

then D, E may be chosen to be bidiagonal semi-infinite matrices

D =
∞∑

n=0

|n〉〈n| + |n〉〈n + 1|, (12)

E =
∞∑

n=0

|n〉〈n| + |n + 1〉〈n|. (13)
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Writing out the matrices explicitly we have

D =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 0 0 . . .

0 1 1 0
. . .

0 0 1 1
. . .

0 0 0 1
. . .

...
. . .

. . .
. . .

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, E =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 . . .

1 1 0 0
. . .

0 1 1 0
. . .

0 0 1 1
. . .

...
. . .

. . .
. . .

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (14)

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 . . .

0 0 0 0
. . .

0 0 0 0
. . .

0 0 0 0
. . .

...
. . .

. . .
. . .

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (15)

Due to the form of A, (5) reduces to

P({τi}) = Z−1
P2∏

j=1

ω(Bj ) (16)

where Bj is as in (3), and ω(Bj ) is now given by

ω(Bj ) = 〈0|
l∏

i=1

Xτi |0〉 (17)

where l is the length of the binary string Bj and i labels the entries in that string; Xτi is
either a matrix D or a matrix E according to whether the entry τi in the string is 1 or 0.

The algebraic rules (9, 10) imply immediately that the weight of a string comprising
a segment of consecutive zeros followed by a segment of consecutive ones is equal to 1.
In other words, a string where any 0s are all to the left and any 1s are all to the right has
weight 1:

ω(0 · · ·01 · · ·1) = 〈0|E · · ·ED · · ·D|0〉 = 〈0|0〉 = 1. (18)

Using rule (8) all binary strings can be reduced to strings of the above type and the weight
of any string is easily computed. For example,

ω(10) = 〈0|DE|0〉 = 〈0|D|0〉 + 〈0|E|0〉 = 2,

ω(110) = 〈0|DDE|0〉 = 〈0|DD|0〉 + 〈0|DE|0〉 = 1 + 2 = 3, (19)

ω(1010) = 〈0|DEDE|0〉 = 〈0|DDE|0〉 + 〈0|EDE|0〉 = 3 + 〈0|DE|0〉 = 5.

This reduction procedure gives precisely the same result as the pushing procedure of Angel.
In fact Lemma 2.3 of [14] proves that when ω is defined via the pushing procedure, the
following relation holds

ω(B10B ′) = ω(B1B ′) + ω(B0B ′) (20)
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for arbitrary finite binary sequences B, B ′. But this is the same reduction formula that holds
for the matrix representation:

ω(B10B ′) = 〈0|XDEX′|0〉 (21)

= 〈0|XDX′|0〉 + 〈0|XEX′|0〉 (22)

where X, X′ are the matrix representation of the binary sequences B , B ′, respectively. This
shows that the definition of ω by the matrix formulation and that by the pushing procedure
coincide.

The weights W of 2-TASEP configurations are computed from the weights ω of binary
strings as follows. Recalling that N -TASEP configurations are translationally invariant un-
der the periodic boundary conditions we have:

W(0210) = W(2100) = ω(100) = 3, (23)

W(0211021) = W(1021102) = ω(10)ω(110) = 6, (24)

and the corresponding probabilities are given by

P(0210) = P(2100) = W(0210)

Z(4,1,1)
= 3

24
, (25)

P(0211021) = P(1021102) = W(1021102)

Z(7,3,2)
= 6

735
, (26)

where Z is defined in (4).

2.3 Queueing Interpretation of Ferrari and Martin

Ferrari and Martin used N -line configurations to generate N -TASEP configurations in terms
of queueing processes. Here, we recall the interpretation in the case of the 2-species TASEP
in terms of queueing processes and make the connection with the matrix product represen-
tation of the stationary measure.

We recall (see e.g. Fig. 2) that a 2-line configuration generates a 2-TASEP configuration.
Since, as described above, the stationary state factorises about the positions of the second-
class particles we only need to consider a binary string B of 1s and 0s between two 2s in a
2-TASEP configuration. There are several 2-line configurations which generate the string B .
Those 2-line configurations must satisfy two conditions: (a) both lines 1 and 2 must contain
the same number of particles, equal to the number of 1s in B and (b) line 2 coincides with B .
The possibilities for line 1 are then generated from line 2 by pushing particles to the right.
For example, the lower line of Fig. 2 has three strings of type B delimited by the three
second class particles: B0 = 0, B1 = 1010100 and B2 = 100. The upper-line string 1000011
is one of the strings producing B1, the string 010 is one of the strings producing B2 and the
string 0 is the only string producing B0.

Given a 2-line configuration one can associate to it the trajectory of the length of a queue.
Consider the labels of the particles of line 2 as first or second class particles as given by
Angel’s algorithm (illustrated in Fig. 1). Time for the queue runs from right to left: at each
site i it is assigned a time t (i) = L− i. The queue has length zero at the times corresponding
to the positions of second class particles in line 2 (unused service times), a particle in line
1 represents an arrival time and a first class particle in line 2 represents a service time. At
a given time t (i) the length of the queue (constrained to be non-negative) increases by one
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Fig. 2 Queueing picture for the two species case. Here time t (i) = L − i increases from right to left, where
i is site number

when a particle is present at site i in line 1 but not in line 2 (a new arrival occurs and is
not serviced); the length of the queue decreases by one when a particle is present in line 2
but not in line 1 (a service occurs with no new arrival). If no particles are present in lines 1
and 2 (no service or new arrival occurs) or when particles are present in both lines 1 and 2
(a new arrival occurs and is serviced) the queue remains at the same length. The weight of
a 2-TASEP string is then given by all possible queue trajectories, consistent with following
constraints (i) the queue has length zero at the positions of the second class particles (ii)
the effective service times of the queue are fixed by the positions of the first class particles.
Since the full 2-line configuration can be retrieved by knowing the 2-TASEP configuration
and the trajectory of the queue, to enumerate the ancestors of a 2-TASEP configuration it is
enough to enumerate the queue trajectories compatible with it.

We now illustrate how the product of matrices A, D, E defined in (11, 12, 13) precisely
enumerates the possible trajectories of the queue giving rise to a given 2-TASEP configura-
tion. The right hand vector |0〉 represents an initial queue length of 0. At each service time
of the queue we have a matrix D and at each non-service time a matrix E. A vector |n〉
represents the length of the queue. If the length of the queue just before a service time is
n > 0 the action of D on |n〉 is

D|n〉 = |n〉 + |n − 1〉. (27)

The two terms represent the two possibilities at the service time: the first represents the
service of a new arrival at that time, the second represents a service and no new arrival. If
n = 0,

D|0〉 = |0〉 (28)

which implies that a new arrival has to be serviced at this time, otherwise there would be an
unused service which is forbidden.

Similarly, if the length of the queue is n ≥ 0 just before a non-service time, the action of
E on |n〉 is

E|n〉 = |n〉 + |n + 1〉. (29)

The first term represents no new arrival at that time, the second term represents a new arrival
at that time.
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The projector |0〉〈0| at the left end of the string ensures that only trajectories of the queue
which finish at length 0 are counted and the queue length is set to 0 for the start of the next
string.

Remarks

(i) An alternative way to determine the queue length n at a given time t (i) = L − i is the
following. In Fig. 2 each particle in line 1 is associated to a particle in line 2 by a dashed
line. The length of the queue at t (i) is given by the number of dashed lines intersecting
a vertical segment passing through i−, i.e. just to the left of site i; vertical dashed lines
do not affect the queue length.

(ii) The trajectory of the length of the queue in the queueing process with constraints de-
scribed above is precisely a Motzkin path. This allows one to represent matrix product
calculations in terms of ensembles of Motzkin paths see e.g. [22–24].

3 The N -Species TASEP

3.1 Construction for N Species of Particle

In this section we review how the construction for the 2-species case is extended to the N -
species case [17]. For N species of particle we consider N -line configurations of particles.
The first line comprises P1 particles distributed randomly (with at most one particle per site).
The second line comprises P1 + P2 particles distributed randomly and so on until the N th
line which comprises P1 + P2 + · · · + PN particles distributed randomly. Initially, in this
N -line configuration, particles are not differentiated into species. In the following we define
the construction by which a species label is attributed to each of the particles. Once this has
been done the N th line is identified with an N -TASEP configuration.

We start with line 1 and associate each particle in line 1 to a particle in line 2 as in
Sect. 2.1. This is done by beginning with a particle in line 1 and associating it with the
nearest particle, at the same site or to the left, in line 2. We then take the next particle to
the left in line 1 and associate it in the same way to the first unassociated particle in line 2.
This process is continued until each of the particles in line 1 is associated with one particle
in line 2. These P1 particles in line 2 are then labelled 1 and the remaining P2 unassociated
particles in line 2 are labelled 2. The resulting labels do not depend on which particle we
began with in line 1, as commented in Sect. 2.1.

We now proceed to associate the particles in line 2 with those in line 3. First we use the
same procedure as described above to associate the particles labelled 1 in line 2 each to a
particle in line 3. The P1 associated particles in line 3 are then labelled 1. We then proceed
to associate the particles labelled 2 in line 2 to P2 of the unassociated particles in line 3
(ignoring the particles already labelled 1 in line 3). These particles in line 3 are then labelled
2 and the remaining P3 unassociated particles in line 3 are labelled 3.

The procedure is then repeated up to line N and results in PK of the particles in line N

having label K where 1 ≤ K ≤ N . The construction is illustrated by an example in the three
species case in Fig. 3. Starting from the random distributions of particles in the N lines, one
obtains a configuration of the N species TASEP with PK particles of species K . The proba-
bility of the N -TASEP configuration so obtained is equal to its stationary probability under
the N -TASEP dynamics. This was proven in [17]; in Sect. 4.4 we shall give an alternative
proof, based on the matrix formulation, for the 3-TASEP.
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Fig. 3 Graphical representation of Ferrari-Martin’s algorithm

Our aim is now to invert this construction. That is, for a given N -TASEP configuration,
we wish to compute the probability that it is generated by the above procedure. This amounts
to the combinatorial problem of counting the number of ways particles may be distributed
in the N -line configuration such that the construction will lead to the desired N -TASEP
configuration.

As has been discussed in Sect. 2.1, for the 2 species case Angel [15] gave such a con-
struction and this is equivalent to the matrix product approach of Derrida et al. [12] (see
Sect. 2.2). We showed this by using the queueing representation of Ferrari and Martin. In
the following we first provide an algorithm, generalising the pushing procedure of Sect. 2 by
which the probabilities can be computed. We then construct explicit matrices which compute
the N -TASEP weights by book-keeping the generalized pushing procedure.

3.2 Ferrari and Martin’s Construction and the Reverse Algorithm

As described above, in the N -species procedure of Ferrari and Martin a configuration of the
N -TASEP is obtained from an N -line configuration, where each of the N lines consists of
a single species TASEP configuration. The procedure may be viewed in the following way:
from line 1 (a configuration of the single species TASEP) and line 2 one obtains a uniquely
defined configuration of the 2-TASEP; from that configuration of the 2-TASEP and line 3
one constructs a configuration of the 3-TASEP and so on, until one reaches a configuration of
the N -TASEP. Therefore, a given configuration of the N -TASEP arises from a whole set of
(N −1)-TASEP configurations that we shall call its ancestors; each of these (N −1)-TASEP
configurations arises in turn from a whole set of (N − 2)-TASEP ancestors etc.

The stationary weight of the initial N -TASEP configuration is then given (but for an
overall normalization constant) by the sum of the weights of the (N − 1)-TASEP configu-
rations that lead to it (its ancestors). Applying this procedure recursively, we observe that
this stationary weight is given by the sum of the weights of its (N − 2)-TASEP ancestor
configurations. Finally, because the single species TASEP has a uniform steady state, the
weight of any N -TASEP configuration is nothing but the total number of configurations
of the single species TASEP from which it derives. Therefore, to calculate the weight of a
given N -TASEP configuration we must determine the total number of 1-TASEP configura-
tions that are its ancestors.

In the following we shall give a recursive algorithm to determine all the (N − 1)-TASEP
ancestors of a given N -TASEP configuration. Iterating this algorithm it is possible to obtain
the total number of 1-TASEP ancestors of a given N -TASEP configuration; this number
corresponds to the stationary weight of the N -TASEP configuration.

In order to simplify our discussion we shall first present this algorithm for the case of
a 3-TASEP configuration, i.e. for a string of particles of classes 1, 2, 3 and holes (denoted
by 0). We start with an initial 3-TASEP configuration:
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(i) Freeze the positions of the 2s and the 3s. Construct all possible configurations obtained
by pushing the 1s through the holes towards the right, until they hit a 2 or a 3 (i.e. a 1
can cross neither a 2 nor a 3).
→ This procedure leads to many 3-TASEP configurations with various positions of
the 1s. From now on the sites where the 1s are located will be passive.

(ii) Keep the positions of the 3s frozen and start moving the 2s. For each configuration ob-
tained above, construct all possible configurations obtained by pushing the 2s through
the holes towards the right, until they hit a 3. Note that the sites occupied by 1s are
spectators and the 2s hop over them as if they do not exist.
→ This procedure leads to many 3-TASEP configurations in which the positions of the
1s and the 2s are fixed.

(iii) Replace all the 3s by holes. We thus have obtained the complete set of 2-TASEP an-
cestors of the initial 3-TASEP configuration we started with.

(iv) The stationary weight of the initial 3-TASEP configuration (up to a global normaliza-
tion constant) is the sum of the weights of its 2-TASEP ancestors.

Let us illustrate the algorithm with the explicit example of the string 2103

(i) By pushing 1s to the right we obtain the strings 2103, 2013.
(ii) By pushing 2s to the right (through the 1s), from 2103 we obtain 2103 and 0123 and

from 2013 we obtain 2013 and 0213.
(iii) We replace 3s by 0s to obtain the strings 2100, 0120, 2010, 0210.
(iv) The weight of string 2103 in the 3-TASEP in terms of 2-TASEP weights is given by

W(2103) = W(2100) + W(0120) + W(2010) + W(0210),

which we may calculate, for example by using the matrix ansatz for the 2-TASEP (8–
10) and (23), as W(2103) = 3 + 1 + 2 + 3 = 9.

It is easy to generalise to the N -species case and compute the weight of a N -TASEP
configuration in terms of the weights of (N−1)-TASEP configurations

(i) Freeze the positions of the species 2, . . . ,N . Construct all possible configurations ob-
tained by pushing the 1s through the holes towards the right (a 1 cannot cross any
species of particle).

(ii) Now in turn for K = 2, . . . ,N − 1 push species K to the right keeping the positions
of species K + 1, . . . ,N frozen and with species 1, . . . ,K − 1 spectators; i.e. for each
configuration obtained from step 1, construct all possible configurations obtained by
pushing the 2s through the holes to the right, allowing the 2s to hop over 1s; then push
3s to the right allowing 3s to hop over 2s and 1s, and so on until species K − 1 have
been pushed to the right, hopping over all other species except K .

(iii) In all of the N -TASEP configurations generated in step (ii), replace all the Ns by holes.
We thus have obtained a whole set of (N−1)-TASEP configurations: this is the com-
plete set of ancestors of the initial N -TASEP configuration we started with.

(iv) The sum of the stationary weight of all these (N−1)-TASEP ancestor configurations
gives the stationary weight of the N -TASEP configuration.

We saw that ‘the pushing procedure’ of Angel is naturally implemented by the D,E and
A matrices. The algorithm given above is also based on recursive pushing procedures and as
we shall show in Sect. 4.2 can be encoded by a matrix ansatz; in this case the matrices for
the N -TASEP are built by using the matrices for the (N−1)-TASEP as elements.
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3.3 Queueing Interpretation of N -Species Construction

Ferrari and Martin also proposed a queueing interpretation for the multiline construction.
The N lines of the N -species construction correspond to N − 1 queues. The first line rep-
resents arrival times to the queue 1. The second line represents service times for queue 1.
We continue using the convention that the queue time runs from right to left, so that the
time t (i) associated to site i is given by t (i) = L − i. As we have seen in Sect. 2.3, unused
service times of queue 1 become second-class particles. Then when the particles of line 2
have been labelled either first or second-class, they represent the arrivals for queue 2. The
arrivals are distinguished into first and second-class and the queue is a priority queue: at
the service times (given by the particles in line 3) the highest priority waiting customer is
always serviced first. That is, in queue 2 first-class arrivals are served before second-class
arrivals. The output of these service times then become the arrival times for queue 3 with
unused service times in queue 2 providing third-class arrivals to queue 3. This construction
is iterated until the particles in line N − 1, labelled 1, . . . ,N − 1 provide the arrivals for
queue N − 1 and the particles in line N provide the service times for queue N − 1. When
the particles in line N are labelled 1, . . . ,N they become the output of queue N − 1, which
corresponds to the N -TASEP configuration.

4 The Matrix Product Formulation

In this section, we show how the recursive construction for the N -TASEP, described in
Sect. 3.2, can be encoded within the matrix product formulation, described in Sect. 2.2.

4.1 Definition of the Matrix Product Ansatz and Simple Examples

The matrix ansatz [9] provides a solution to the stationary master equation of the N -
TASEP (made explicit later in (51)), as follows. First consider non-commuting matrices
X0,X1, . . . ,XN , where XK is associated to particles of class K (in particular X0 is as-
sociated to holes, X1 is associated to first-class particles etc.). The ansatz represents the
stationary probability P(C) of a N -TASEP configuration C = (τ1, . . . , τL) (where τi is equal
to K if site i is occupied by a particle of class K) as a statistical weight W(C) divided by a
normalization Z

P(C) = 1

Z
W(C) (30)

where the weight is given by the trace of the product of L matrices, as follows

W(C) = Tr(Xτ1 . . .XτL). (31)

Here Xτi is equal to XK if site i is occupied by a particle of class K (K = 0,1, . . . ,N)

in configuration C . The normalization factor Z (that depends on L and on all the PK ’s
where PK represents the total number of particles of class K) ensures that

∑
C P(C) = 1.

We emphasize that the matrix formulation depends on the number of species. For example
the matrices that represents first-class particles in the 2-TASEP and the 3-TASEP are not the
same.

If the system contains only first-class particles and holes, it is well known that the sta-
tionary measure is uniform. Thus the particles and the holes may both be represented by one
(a scalar) and the matrix ansatz reduces here to a trivial form.
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For the 2-TASEP holes, first-class and second-class particles are represented respectively
by the matrices X0 = E, X1 = D and X2 = A (in the notation of [9, 12]) which satisfy (8,
9, 10). It is convenient to introduce matrices ε and δ defined by

E = 1 + ε, D = 1 + δ (32)

where 1 is the identity matrix. Then, by (8, 9, 10), the matrices ε,A, δ generate the following
quadratic algebra:

δε = 1,

δA = 0, (33)

Aε = 0.

4.2 Matrix Ansatz for 3-TASEP

We now present the matrix product formulation of the stationary state of the 3-TASEP.

X1 = 1 ⊗ 1 ⊗ D + δ ⊗ ε ⊗ A + δ ⊗ 1 ⊗ E, (34)

X2 = A ⊗ 1 ⊗ A + A ⊗ δ ⊗ E, (35)

X3 = A ⊗ A ⊗ E, (36)

X0 = 1 ⊗ 1 ⊗ E + 1 ⊗ ε ⊗ A + ε ⊗ 1 ⊗ D . (37)

Note that the matrices are generally sums of tensor products of three semi-infinite matrices
used in the matrix product representation of the stationary state of the 2-TASEP. From the
usual representation of the matrices A,δ and ε given in [9, 12] we obtain explicit expressions
for the above matrices: they all have a block structure that is bidiagonal. Defining matrices
F , G, H and R as

F =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

D 0 0 0 . . .

0 D 0 0
. . .

0 0 D 0
. . .

0 0 0 D
.. .

...
. . .

. . .
. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, G =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

E 0 0 0 . . .

A E 0 0
. . .

0 A E 0
. . .

0 0 A E
.. .

...
. . .

. . .
. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (38)

H =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A E 0 0 . . .

0 A E 0
. . .

0 0 A E
.. .

0 0 0 A
.. .

...
. . .

. . .
. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, R =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

E 0 0 0 . . .

0 0 0 0
. . .

0 0 0 0
. . .

0 0 0 0
. . .

...
. . .

. . .
. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(39)
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the matrix representation of (34–37) reads

X1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

F G 0 0 . . .

0 F G 0
. . .

0 0 F G
.. .

0 0 0 F
. . .

...
. . .

. . .
. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, X2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

H 0 0 0 . . .

0 0 0 0
. . .

0 0 0 0
. . .

0 0 0 0
. . .

...
. . .

. . .
. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (40)

X3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

R 0 0 0 . . .

0 0 0 0
. . .

0 0 0 0
. . .

0 0 0 0
. . .

...
. . .

. . .
. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, X0 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

G 0 0 0 . . .

F G 0 0
. . .

0 F G 0
. . .

0 0 F G
.. .

...
. . .

. . .
. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (41)

All these matrices are triply infinite dimensional because their coefficients are themselves
infinite dimensional matrices with elements D, A and E (which are also infinite dimensional
matrices).

We define the trace of a product of X of matrices (34–37) as

TrX =
∞∑

l=0

∞∑

m=0

∞∑

n=0

[〈l| ⊗ 〈m| ⊗ 〈n|]X [|l〉 ⊗ |m〉 ⊗ |n〉] . (42)

Generally, using the definitions (34–37), we can write out any X as a sum of terms

X =
∑

i

Si ⊗ Ui ⊗ Vi. (43)

where Si , Ui and Vi are each single strings of fundamental matrices δ, ε,1,A. A sufficient
condition for the trace of X to be finite is that each string Si , Ui and Vi contains at least
one A. In turn, a sufficient condition for this is that X contains at least one X3 and at
least one X2. In this case X necessarily contains a substring X2χX3 where χ is a product of
X0 and X1. Due to the form of (34, 37), the expansion (43) of χ can be written as

χ =
∑

i

si ⊗ εni ⊗ vi,

where ni ≥ 0 and vi contains precisely ni matrices A. Then we find that

X2χX3 =
∑

i

[
AsiA ⊗ εni A ⊗ AviE + AsiA ⊗ δεni A ⊗ EviE

]

=
∑

i

[
AsiA ⊗ εni A ⊗ AviE + AsiA ⊗ (1 − δni ,0)ε

ni−1A ⊗ EviE
]

(44)

where we have used the quadratic algebra (34) and (1 − δni ,0) = 0 if ni = 0. Thus we see
that (44) is a sum of strings of form (43) fulfilling the condition that each string Si , Ui and
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Vi contains at least one A. Thus, we have proven that if a string X of matrices Xτi contains
at least one X2 and at least one X3, then TrX is finite.

It is important to note that we do not have a simple factorisation property as in the N = 2
case where A was a projector. Instead we find that

X2X3 = A ⊗ A ⊗ A, (45)

thus X2X3 is a projector.

4.3 Matrices as Priority Queue Matrices

We now explain in the case N = 3 how these matrices may be obtained from the N -species
queueing interpretation of the N -line configuration discussed in Sect. 3.3. In this case we
have a 3-line configuration that represents two queues in tandem. Queue 1 has one type of
customer which are considered to be first-class: Line 1 represents the arrival times of (first-
class) customers in queue 1 and line 2 gives the service times of queue 1. The particles
of line 2 are labelled 1 or 2 according to whether a service time is used or unused. Once
labelled, the particles of line 2 become the arrival times to queue 2. Queue 2 is a priority
queue containing first and second-class customers: any first-class customer is served before
the second-class customers waiting in the queue. The particles of line 3 are the service times
for queue 2. They are labelled by which class of customer is served; if a service is unused it
is labelled 3.

We now consider the possible trajectories of the queue system. To do this we require 3
integer counters l,m,n: l is the number of first-class customers waiting in queue 2; m is
the number of second-class customers waiting in queue 2; n is the number of first-class cus-
tomers waiting in queue 1 (i.e. the length of queue 1). The three counters indicate the state
of the system at each queue time t (i) = L − i (which runs from right to left). The counters
are therefore indexed by the times t (i) associated to sites i, but we omit this in our notation.

Remark The values of the counters can be obtained directly from Fig. 3 as follows: for each
site i, the counter l with index t (i) represents the number of dashed lines crossing a vertical
segment passing through i− between lines 2 and 3; m represents the number of dotted lines
crossing the same segment and n represents the number of dashed lines crossing the segment
between lines 1 and 2; vertical dashed lines are not counted at all. The queue counters do not
register (a) second class particles served at their arrival time, (b) first class particles served
in both queues at their arrival time and (c) unused services in the third line. However, a 3-
TASEP configuration and the trajectories of the three queues uniquely determine the 3-line
configuration generating it. This implies that it is enough to enumerate the set of queues
trajectories compatible with the 3-TASEP configuration we are computing the weight of.

The queue counters l,m,n can be represented by a state vector |l mn〉
|l mn〉 ≡ |l〉 ⊗ |m〉 ⊗ |n〉 (46)

where |l〉 = 0 for l < 0. We show now that the matrix product using X0,X1,X2,X3 defined
in (34–37) precisely enumerates the possible trajectories of the state of the tandem queues
giving rise to a given configuration (τ1, . . . , τL).

Explicitly, the matrix element 〈l′m′n′|Xτ1 . . .Xτ1 |lmn〉 is the number of queue histories,
consistent with the configuration τ1 . . . τk , that begin with the queue counters taking values
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l,m,n and end with the queue counters taking values l′,m′, n′. Thus the weight a config-
uration defined by the trace (42) of a product of matrices Xτi corresponds to the number
of queue trajectories that return the queue counters after time t (L) to any possible original
setting l,m,n at t (0), and that are consistent with the service times corresponding to the
configuration τ1 . . . τL.

We list the possible updates of the counters l,m,n at a given site (or time), according to
the line 3 label of that site, i.e. the site variable τi in the N -TASEP configuration. Then from
each possible update of the queue lengths we deduce the necessary action of the matrices
Xi , i = 0,1,2,3, on the state vector |l mn〉. Finally we can check from the definitions (34–
37) of the actions of D, E, A (27, 28, 29) that Xi |l mn〉 produces the required update of the
queue counters.

τi = 3 In this case there is an unused service in queue 2 which implies l = m = 0. In queue
1 there may or may have not been an arrival therefore n → n or n → n+1. Thus, the action
of X3 must be

X3|l mn〉 = δl,0δm,0|0〉 ⊗ |0〉 ⊗ [|n〉 + |n + 1〉] = A ⊗ A ⊗ E|l mn〉 (47)

which recovers the matrix expression for X3, (36).
τi = 2 In this case a second-class service occurs in queue 2 which implies that the number
of first-class customers l = 0 and there is no first-class arrival in queue 2. If there were a
second-class arrival in queue 2 so that m → m, it would imply n = 0 as there would have
to be an unused service in queue 1. On the other hand, if there were no second-class arrival
at queue 2 so that m → m− 1 then there might or might not be a first-class arrival at queue
1 and n → n or n → n + 1. Thus, the action of X2 must be

X2|l mn〉 = δl,0|0〉 ⊗ [
δn,0|m〉 ⊗ |0〉 + |m − 1〉 ⊗ [|n〉 + |n + 1〉] ]

= [A ⊗ 1 ⊗ A + A ⊗ δ ⊗ E] |l mn〉 (48)

which recovers the matrix expression for X2, (35).
τi = 1 In this case a first-class service occurs in queue 2. If there is also a first-class arrival
at queue 2 then l → l, m → m and n → n−1 or n since there is a first-class service and
possibly a first-class arrival at queue 1. If there is instead a second-class arrival at queue 2
(a second-class service in queue 1) then there must be no first-class customers in queue 1
and so l → l − 1, m → m+ 1 and n = 0. Finally, if there is no arrival to queue 2 then there
is no departure from queue 1 and there may or may not be an arrival at queue 1. Therefore
l → l − 1, m → m and n → n or n + 1.
Thus, the action of X1 must be

X1|l mn〉 = |l〉 ⊗ |m〉 ⊗ [|n〉 + |n − 1〉] + |l − 1〉 ⊗ |m + 1〉 ⊗ |0〉δn,0

+ |l − 1〉 ⊗ |m〉 ⊗ [ |n〉 + |n + 1〉 ]

= |l〉 ⊗ |m〉 ⊗ D|n〉 + δ|l〉 ⊗ ε|m〉 ⊗ A|n〉 + δ|l〉 ⊗ |m〉 ⊗ E|n〉
= [1 ⊗ 1 ⊗ D + δ ⊗ ε ⊗ A + δ ⊗ 1 ⊗ E] |l mn〉 (49)

which recovers the matrix expression for X1, (34).
τi = 0 In this case there is no service at queue 2. If there is first-class arrival at queue 2
l → l + 1, m → m and n → n − 1 or n since there is a first-class service and possibly a
first-class arrival at queue 1. If there is instead a second-class arrival at queue 2 (a second-
class service in queue 1) then there must be no first-class customers in queue 1 and so l → l,
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m → m + 1 and n = 0. Finally, if there is no arrival at queue 2 then there is no departure
from queue 1 and there may or may not be an arrival at queue 1. Therefore l → l, m → m

and n → n or n + 1. Thus, the action of X1 must be

X0|l mn〉 = |l + 1〉 ⊗ |m〉 ⊗ [ |n〉 + |n − 1〉 ] + |l〉 ⊗ |m + 1〉 ⊗ |0〉δn,0

+ |l〉 ⊗ |m〉 ⊗ [ |n〉 + |n + 1〉 ]

= ε|l〉 ⊗ |m〉 ⊗ D|n〉 + |l〉 ⊗ ε|m〉 ⊗ A|n〉 + |l〉 ⊗ |m〉 ⊗ E|n〉
= [ε ⊗ 1 ⊗ D + 1 ⊗ ε ⊗ A + 1 ⊗ 1 ⊗ E] |l mn〉 (50)

which recovers the matrix expression for X0, (37).

We now can interpret the result (45), that X2X3 is a projector, within the queueing repre-
sentation. Since X3 corresponds to an unused service in queue 2 we must have l = m = 0
to begin with. Then, subsequent to the action of X3, the action of X2, corresponding to a
second class service in queue 2, implies that there must have been a second class arrival in
queue 2 to keep m = 0. This in turn implies an unused service in queue 1 and n = 0.

4.4 Algebraic Proof of the Matrix Product Ansatz

The matrix product ansatz may be proved independently of the queueing representation in
an algebraic way. We shall use the technique of “hat matrices” to prove the ansatz (see e.g.,
[20, 25, 26] for more details).

We first recall the stationarity condition to be satisfied. The dynamics of the system can be
encoded in a Markov matrix Q of size �×� where � is the total number of configurations
of the system. The coefficient Q(C, C′) of this matrix represents the rate of transition from
a configuration C′ to a different configuration C ; −Q(C, C) is the total rate of exit from a
given configuration C . (Notice that this is the transpose of the usual generator matrix used
in probability.) Thus the stationary probabilities must satisfy the stationary master equation

∑

C′
Q(C, C′)P(C′) = 0. (51)

Due to the local structure of the rules (1,2), Q can be written as a sum of local matrices that
represent the transitions that take place at a bond (i, i + 1)

Q =
L∑

i=1

Qi,i+1. (52)

where

Qi,i+1 = 1⊗i−1 ⊗ Qloc ⊗ 1⊗L−i−1 (53)

and Qloc is a (N + 1)2 × (N + 1)2 matrix whose off diagonal elements Qloc(τiτi+1; τ ′
i τ

′
i+1)

give the transition rate from local bond configuration τ ′
i τ

′
i+1 to τiτi+1 (for any i) and whose

diagonal element Qloc(τiτi+1; τiτi+1) gives minus the total transition rate out of local bond
configuration τiτi+1.

Since the only transitions involved in the N -TASEP are exchanges at a bond, we have

Qloc(JK,KJ) = −Qloc(KJ,JK) = 1, if K ≥ 1 and J > K or J = 0 ,

Qloc(K
′J ′,KJ ) = 0, otherwise,
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where here K,J are indices that take values from 0 to N . When the steady state probabilities
are written in the matrix product form (30) the matrix Qi,i+1 (53) acts only on the ith and
the (i + 1)th matrices in the product through Qloc. The stationarity condition (51) then may
be written

L∑

i=1

Tr(Xτ1 . . .Xτi−1Yτi ,τi+1Xτi+2 . . .XτL) = 0 (54)

where

Yτi ,τi+1 =
∑

τ ′
i
,τ ′

i+1

Qloc(τiτi+1; τ ′
i τ

′
i+1)Xτ ′

i
Xτ ′

i+1
. (55)

That is,

YKJ = −XKXJ for all K ≥ 1 and J > K or J = 0,

YJK = XKXJ for all K ≥ 1 and J > K or J = 0, (56)

YJJ = 0 for all J.

The key point to prove the validity of the matrix ansatz is to show that Yτi ,τi+1 is a

divergence-like term, i.e. there exist matrices X̂τ such that

Yτi ,τi+1 = Xτi X̂τi+1 − X̂τi Xτi+1 . (57)

Summation over i leads to a global cancellation in (54), proving thereby that the stationarity
condition (51) is satisfied. Combining (56, 57), we obtain the conditions:

XKXJ = X̂KXJ − XKX̂J for all K ≥ 1 and J > K or J = 0, (58)

XKXJ = XJ X̂K − X̂J XK for all K ≥ 1 and J > K or J = 0, (59)

0 = XJ X̂J − X̂J XJ for all J. (60)

For N = 2, it turns out to be rather easy to solve the above equations (see e.g. [20]):
indeed, one finds that (58–60) may be satisfied by choosing X̂τ to be scalars so that they
commute with Xτ . Then (60) is immediately satisfied and (58, 59) reduce to 3 conditions

X1X0 = X̂1X0 − X̂0X1, (61)

X1X2 = X̂2X1 − X̂1X2, (62)

X2X0 = X̂2X0 − X̂0X2. (63)

Choosing X̂1 = +1, X̂0 = −1, X̂2 = 0 and X1 = D, X0 = E, X2 = A recovers (8–10).
For N = 3 it turns out that choosing X̂τ to be scalars does not allow (58–59) to be

satisfied. Thus, the proof rests upon finding the 4 matrices X̂K for K = 0,1,2,3. We now
write explicit forms for the hat matrices that fulfil the above relations when XK are given by
(34–37):

X̂1 = (1 − δ) ⊗ 1 ⊗ 1,

X̂2 = −A ⊗ δ ⊗ 1,

X̂3 = −A ⊗ A ⊗ 1,

X̂0 = −X0 + (ε − 1) ⊗ 1 ⊗ 1. (64)
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It remains to verify that relations (58, 59, 60) are satisfied. Here we check a few relations
involving X1 and X̂1. For J = 1 the rhs of (60) becomes

X1X̂1 − X̂1X1 = (1 − δ) ⊗ 1 ⊗ D + δ(1 − δ) ⊗ ε ⊗ A + δ(1 − δ) ⊗ 1 ⊗ E

− (1 − δ) ⊗ 1 ⊗ D − (1 − δ)δ ⊗ ε ⊗ A − (1 − δ)δ ⊗ 1 ⊗ E = 0.

Thus (60) is satisfied in the case J = 1.
Using relations (34) we find

X1X2 = A ⊗ 1 ⊗ DA + A ⊗ δ ⊗ DE = A ⊗ 1 ⊗ A + A ⊗ δ ⊗ (D + E),

and

X̂1X2 − X1X̂2 = A ⊗ 1 ⊗ A + A ⊗ δ ⊗ E − (−A ⊗ δ ⊗ D)

= X1X2,

X2X̂1 − X̂2X1 = A(1 − δ) ⊗ 1 ⊗ A + A(1 − δ) ⊗ δ ⊗ E

− (−A ⊗ δ ⊗ D − Aδ ⊗ δε ⊗ A − Aδ ⊗ δ ⊗ E),

= X1X2

thus (58, 59) are satisfied for the case K = 1, J = 2. Similarly, all relations (58, 59, 60) may
be verified.

4.5 Comparison to the Solution of Mallick, Mallick and Rajewsky

Mallick, Mallick and Rajewsky [18] found the 3-species stationary measure using a matrix
Ansatz, we call their solution MMR matrices. The main differences with our approach are
the following. (i) MMR matrices are doubly infinite while ours are triply infinite. (ii) MMR
matrices may have negative entries (or even imaginary entries in an equivalent representa-
tion) and in this case no queueing interpretation is available. (iii) The trace of MMR matrices
is finite (and real and positive) only when there is a matrix A3 corresponding to the 3rd class
particle at the right end of the string, i.e. the matrices cannot be multiplied in any order. For
our matrices, however, the trace of Xτ1 . . .XτL is the same as the trace of Xτ2 . . .XτLXτ1 ,
etc. (iv) The proof of the finiteness of the trace of the MMR matrices is rather involved,
while our proof at the end of Sect. 4.2 is elementary. (v) So far MMR matrices could not
be generalized to the N -class TASEP for N > 3, while using the queueing representation in
the next section we show how our matrices generalize to N > 3.

5 Hierarchical Matrix Ansatz for the Multispecies ASEP

In this section, we generalize the previous construction to the multispecies totally asymmet-
ric exclusion process on the ring ZL with N classes of particles for any N > 1. We show
that a matrix ansatz for a system containing N classes of particles (plus holes) can be con-
structed recursively knowing a matrix ansatz for a system with N − 1 classes of particles
(plus holes). We shall simply present the results here and give some examples; algebraic
proofs and generalizations can be found in [29].
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The matrices X
(N)
K at level N are obtained by making tensor products of the X

(N−1)
M

defined at level N − 1 with some matrices aKM constructed from ε,A, δ and 1. The matrix
ansatz is given by

X
(N)

0 =
N−1∑

M=0

a
(N)

0M ⊗ X
(N−1)
M , (65)

X
(N)
K = a

(N)

K0 ⊗ X
(N−1)

0 +
N−1∑

M=K

a
(N)
KM ⊗ X

(N−1)
M for 1 ≤ K ≤ N. (66)

We emphasize that in this section our notation for the matrix X
(N)
K has two indices: the lower

index K denotes the class of the particle represented by the matrix, whereas the upper index
N gives the total number of classes considered in the system.

The fundamental building blocks to construct the a
(N)
KM matrices are the matrices ε,A, δ

and 1 (identity). The a
(N)
KM are then given by

a
(N)

00 = 1⊗(N−1), (67)

a
(N)

0M = 1⊗(M−1) ⊗ ε ⊗ 1⊗(N−M−1) for 1 ≤ M ≤ N − 1. (68)

For K ≥ 1 we have

a
(N)

K0 = A⊗(K−1) ⊗ δ ⊗ 1⊗(N−K−1) for 1 ≤ K ≤ N − 1, (69)

a
(N)
KK = A⊗(K−1) ⊗ 1⊗(N−K), (70)

a
(N)
KM = A⊗(K−1) ⊗ δ ⊗ 1⊗(M−K−1) ⊗ ε ⊗ 1⊗(N−M−1) for 1 ≤ K < M ≤ N − 1, (71)

a
(N)

N0 = A⊗(N−1). (72)

It is understood in the formulae above that any matrix raised to a tensor-power equal to zero
is equal to the scalar 1 which can be removed from the tensor product.

Note from (65, 66) that the matrices X
(N)
K at level N are composed of tensor products of(

N

2

)
fundamental matrices ε,A, δ or 1.

5.1 Some Examples

Using the hierarchical matrix ansatz given above, we study explicitly the cases N ≤ 3.
For N = 0, the system does not contain any particles but only holes. There is only one

configuration which has probability 1. Thus, we define X
(0)

0 = 1.
For N = 1, we obtain from equations (65) and (66), using the fact that X

(0)

0 = 1

X
(1)

0 = a
(1)

00 and X
(1)

1 = a
(1)

10 . (73)

But from (67) and (72) we find that a
(1)

00 = a
(1)

10 = 1 and we recover the fact that for a system
with only one class of particles the stationary measure is uniform and therefore the matrix
ansatz is trivial.

For N = 2, we find from equations (67), (68), (70) and (72), that a
(2)

00 = 1, a
(2)

01 = ε,
a

(2)

10 = δ, a
(2)

11 = 1, and a
(2)

20 = A. Then, from the recursion relations (65) and (66), and using
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the fact that X
(1)

0 = X
(1)

1 = 1, we deduce that

X
(2)

0 = a
(2)

00 + a
(2)

01 = 1 + ε = E, X
(2)

1 = a
(2)

10 + a
(2)

11 = 1 + δ = D, and (74)

X
(2)

2 = a
(2)

20 = A. (75)

We retrieve the fundamental matrix ansatz (32).
For N = 3, using the recursion relations (65) and (66), the definitions (67–72) and the

results (74), (75), we obtain

X
(3)

0 = a
(3)

00 ⊗ X
(2)

0 + a
(3)

01 ⊗ X
(2)

1 + a
(3)

02 ⊗ X
(2)

2

= 1 ⊗ 1 ⊗ E + ε ⊗ 1 ⊗ D + 1 ⊗ ε ⊗ A, (76)

X
(3)

1 = a
(3)

10 ⊗ X
(2)

0 + a
(3)

11 ⊗ X
(2)

1 + a
(3)

12 ⊗ X
(2)

2

= δ ⊗ 1 ⊗ E + 1 ⊗ 1 ⊗ D + δ ⊗ ε ⊗ A, (77)

X
(3)

2 = a
(3)

20 ⊗ X
(2)

0 + a
(3)

22 ⊗ X
(2)

2 = A ⊗ δ ⊗ E + A ⊗ 1 ⊗ A, (78)

X
(3)

3 = a
(3)

30 ⊗ X
(2)

0 = A ⊗ A ⊗ E, (79)

and we retrieve the expressions (34–37).

6 Discussion

In this work we have considered the multispecies totally asymmetric exclusion process on
the ring ZL. We have shown how the stationary measure may be written in a matrix product
formulation, thus providing an algebraic proof of the stationary measure which we presented
for the three species case N = 3. For arbitrary N we have shown how the matrix product
formulation may be constructed in a hierarchical fashion, see details in [29].

Ferrari and Martin have constructed the stationary state of the N -TASEP as the output of
N queues in series with N priority-classes of customers, for all N . The construction takes
a N -line binary configuration sampled at random and produces a N -TASEP configuration
whose resulting law is invariant for the N -TASEP. We have shown that the matrix ansatz for
N = 2 of Derrida et al. [12] gives a mechanism to count the number of 2-line configurations
producing a given 2-TASEP configuration; the matrices may be thought of as acting on the
space of queue counters. For N = 2 there is just a single queue with one type of customer
and the queue counter is simply the length of the queue. We have also extended the matrix
ansatz for N > 2. In this case there are multiple priority queues and there are several queue
counters representing the number of each class of customer in each queue. This results in the
queue matrices acting on tensor product spaces and accordingly the ‘matrices’ of the matrix
formulation become higher rank tensors. This relation between the matrices and queueing
processes also provides us with a natural representation of the space on which the matrices
act. Until now, it was believed that the matrices act on a purely formal ‘auxiliary’ space
which did not have any physical interpretation.

The algebraic proof of the stationary measure for N > 3 relies on the existence of ‘hat’
matrices [20, 25, 26] described in Sect. 4.4. This is in contrast to the N = 2 case where the
hat matrices were simply scalars and the relations obeyed by the matrices become a quadratic
algebra, as in the N = 1 open-boundaries case of [9]. For N > 2 the relations between the
matrices have a more complicated algebraic structure and it would be of interest to explore
this further.
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One advantage of the matrix product formulation of the stationary measure is that it
provides a framework within which the calculation of quantities of physical interest, such as
correlation functions, can be carried out. So far we have not attempted such calculations but
it would be important to do so.

Finally, we mention that the multispecies TASEP may be generalised in several ways by
introducing rates which differ from one or additional processes. For example, for N = 1
allowing particles to carry out forward exchanges with holes with rate p and backward
exchanges with rate q generates the partially asymmetric exclusion process for which a
matrix product formulation of the steady state on the open boundary system has been fully
worked out [27, 28]. In the case N = 2 there are partially asymmetric generalisations which
admit matrix product stationary states [12, 20]. So far, in [29], we have found a partially
asymmetric generalization of the matrix product ansatz presented in Sect. 5. It would be of
interest to understand how the queueing interpretation of the steady state should be modified.

Acknowledgements K.M. thanks Nikolaus Rajewsky for inspiring discussions and many memorable mo-
ments devoted to the N -TASEP model. We thank the referee for a careful reading and many useful comments.

We thank the Isaac Newton Institute, Cambridge for hospitality during the programme Principles of
Dynamics of Nonequilibrium Systems where this work was begun. MRE thanks the CNRS for a Visiting
Professorship and the Laboratoire de Physique Théorique et Modèles Statistiques, Université Paris-Sud for
hospitality.

References

1. Harris, T.E.: Diffusion with collisions between particles. J. Appl. Probab. 2, 323 (1965)
2. Spitzer, F.: Interaction of Markov processes. Adv. Math. 5, 246–290 (1970)
3. Liggett, T.M.: Interacting Particle Systems. Springer, New York (1985)
4. Liggett, T.M.: Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Springer, Berlin

(1999)
5. Dhar, D.: An exactly solved model for interfacial growth. Phase Transit. 9, 51 (1987)
6. Gwa, L.-H., Spohn, H.: Bethe solution for the dynamical-scaling exponent of the noisy Burgers equation.

Phys. Rev. A 46, 844 (1992)
7. Golinelli, O., Mallick, K.: The asymmetric simple exclusion process: an integrable model for non-

equilibrium statistical mechanics. J. Phys. A: Math. Gen. 39, 12679–12705 (2006)
8. de Gier, J., Essler, F.H.L.: Exact spectral gaps of the asymmetric exclusion process with open boundaries.

J. Stat. Mech. P12011 (2006)
9. Derrida, B., Evans, M.R., Hakim, V., Pasquier, V.: Exact solution of a 1D asymmetric exclusion model

using a matrix formulation. J. Phys. A: Math. Gen. 26, 1493–1517 (1993)
10. Ferrari, P.A., Kipnis, C., Saada, E.: Microscopic structure of travelling waves in the asymmetric simple

exclusion process. Ann. Probab. 19, 226–244 (1991)
11. Ferrari, P.A.: Microscopic shocks in one dimensional driven system. Ann. Inst. Henri Poincare 55, 637

(1991)
12. Derrida, B., Janowsky, S.A., Lebowitz, J.L., Speer, E.R.: Exact solution of the totally asymmetric simple

exclusion process: Shock profiles. J. Stat. Phys. 73, 8312 (1993)
13. Liggett, T.M.: Coupling the simple exclusion process. Ann. Probab. 4, 339–356 (1976)
14. Ferrari, P.A., Fontes, L.R.G., Kohayakawa, Y.: Invariant measures for a two-species asymmetric process.

J. Stat. Phys. 76, 1153 (1994)
15. Angel, O.: The stationary measure of a 2-type totally asymmetric exclusion process. J. Comb. Theory A

113, 625 (2006)
16. Ferrari, P.A., Martin, J.B.: Multiclass processes, dual points and M/M/1 queues. Markov Process. Rel.

Fields 12, 175–201 (2006)
17. Ferrari, P.A., Martin, J.B.: Stationary distributions of multi-type totally asymmetric exclusion processes.

Ann. Probab. 35, 807 (2007)
18. Mallick, K., Mallick, S., Rajewsky, N.: Exact solution of an exclusion process with three classes of

particles and vacancies. J. Phys. A: Math. Gen. 32, 8399–8410 (1999)
19. Speer, E.R.: The two species asymmetric simple exclusion process in On three levels: micro, meso and

macroscopic approaches in physics (1994). Fannes, C.M., Verbuere, A. (eds.)



Matrix Representation of the Stationary Measure for the Multispecies 239

20. Blythe, R.A., Evans, M.R.: Nonequilibrium steady states of matrix-product form: a solver’s guide.
J. Phys. A: Math. Theor. 40, 333 (2007)

21. Isaev, A., Pyatov, P., Rittenberg, V.: Diffusion algebras. J. Phys. A: Math. Gen. 34, 5815–5834 (2001)
22. Duchi, E., Schaeffer, G.: A combinatorial approach to jumping particles. J. Comb. Theory A 110, 1

(2005)
23. Brak, R., Corteel, S., Essam, J., Parviainen, R., Rechnitzer, A.: A combinatorial derivation of the PASEP

stationary state. Electron. J. Comb. 13, R108 (2006)
24. Blythe, R.A., Janke, W., Johnston, D.A., Kenna, R.: Dyck paths, Motzkin paths and traffic jams. J. Stat.

Mech. Theor. Exp. P10007 (2004)
25. Hinrichsen, H., Sandow, S., Peschel, I.: On matrix product ground states for reaction—diffusion models.

J. Phys. A: Math. Gen. 29, 2643 (1996)
26. Rajewsky, N., Santen, L., Schadschneider, A., Schreckenberg, M.: The asymmetric exclusion process:

Comparison of update procedures. J. Stat. Phys. 92, 151–194 (1998)
27. Sasamoto, T.: One-dimensional partially asymmetric simple exclusion process with open boundaries:

orthogonal polynomials approach. J. Phys. A: Math. Gen. 32, 7109–7131 (1999)
28. Blythe, R.A., Evans, M.R., Colaiori, F., Essler, F.H.L.: Exact solution of a partially asymmetric exclusion

model using a deformed oscillator algebra. J. Phys. A: Math. Gen. 33, 2313–2332 (2000)
29. Prolhac, S., Evans, M.R., Mallick, K.: Matrix product solution of the multispecies partially asymmetric

exclusion process. J. Phys. A (to appear). arXiv:0812.3293

http://arxiv.org/abs/arXiv:0812.3293

	Matrix Representation of the Stationary Measure for the Multispecies TASEP
	Abstract
	Introduction
	Two Species TASEP
	Construction of Angel that Generates the Stationary State
	Matrix Product Solution of Derrida et al.
	Queueing Interpretation of Ferrari and Martin

	The N-Species TASEP
	Construction for N Species of Particle
	Ferrari and Martin's Construction and the Reverse Algorithm
	Queueing Interpretation of N-Species Construction

	The Matrix Product Formulation
	Definition of the Matrix Product Ansatz and Simple Examples
	Matrix Ansatz for 3-TASEP
	Matrices as Priority Queue Matrices
	Algebraic Proof of the Matrix Product Ansatz
	Comparison to the Solution of Mallick, Mallick and Rajewsky

	Hierarchical Matrix Ansatz for the Multispecies ASEP
	Some Examples

	Discussion
	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


